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We study the tunneling current between edge states of quantum Hall liquids across a single long-contact
region and predict a resonance at a bias voltage set by the scale of the edge velocity. For typical devices and
edge velocities associated with charged modes, this resonance occurs outside the physically accessible bias
domain. However, for edge states that are expected to support neutral modes, such as the �= 2

3 and �= 5
2

Pfaffian and anti-Pfaffian states, the neutral velocity can be orders of magnitude smaller than the charged mode
and if so the resonance would be accessible. Therefore, such long tunneling contacts can resolve the presence
of neutral edge modes in certain quantum Hall liquids.
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I. INTRODUCTION

Quantum Hall �QH� states are incompressible quantum
fluids where all bulk excitations are gapped, but gapless
modes exist at the boundaries. In the integer effect, edge
states can be understood in a simple way for noninteracting
electrons,1 with an edge channel matching each filled Landau
level in the bulk, as the Landau bands bend at the edges of
the system due to the confining potential and cross the Fermi
level. In the fractional effect the situation is richer, and there
is a one-to-one relation due to gauge invariance that ties the
bulk states, classified by 2+1D Chern-Simons theories, and
the gapless edge modes.2 Depending on the bulk filling frac-
tion or the details of edge confinement, the edge theory may
contain neutral modes, in addition to a charge mode that
carries the quantized Hall currents. For example, even for a
�=1 QH state, neutral modes are present if the edge is
smooth or reconstructed.3 For fractional QH states, even for
sharply defined edges, neutral modes may be present. Such is
the case for �= 2

3 states,4,5 as well as for the �= 5
2 Pfaffian and

anti-Pfaffian non-Abelian states,6,7 and the situation becomes
even richer if the edges of such states undergo
reconstructions.8

Chiral charge modes, which cannot be localized by disor-
der, are closely tied to the quantization of the Hall conduc-
tance; hence the existence of these modes is unavoidable.
Experiments have been designed to probe the propagation of
these charge modes, in particular to measure their wave
velocity.9,10 On the other hand, to the best of our knowledge,
there has not been any experimental result that confirms the
existence of the neutral modes.

There are a number of reasons as to why one should se-
riously look into ways of detecting neutral edge modes. For
example, there are theoretically unresolved experimental
findings on tunneling on the edges of QH liquids in cleaved-
edge overgrown samples11,12 which could be better under-
stood if information on the neutral modes were available.
More specifically, in these experiments one measures a non-
linear I-V characteristic of Luttinger liquid behavior at the
edges; however, the power-law exponent is not in agreement
with theoretical predictions.2,13 Instead, these exponents
match those obtained if one had only the charge mode and no

neutral ones. However, one cannot construct an operator for
creating an excitation with the charge of an electron and
fermionic statistics using the charge mode alone. Hence, the
neutral modes are both the champions and the villains linger-
ing over the resolution of this puzzle, and this has led to
proposals that the neutral modes may be either extremely
slow14 or topological and nonpropagating at all.15 Another
reason to probe neutral modes is that, in the case of the
interesting non-Abelian states, these are the modes that carry
the nonlocal information of the order and twinning of edge
quasiparticles.

The objective of this paper is to propose a way to probe
neutral edge modes. The proposed setup consists of a long-
contact region, or quantum long contact �QLC�, in which
there are several interfering paths for tunneling charge from
two opposite edges of a Hall bar, as depicted in Fig. 1, re-
sembling an ac Josephson junction. The idea of exploring
interference between tunneling paths is reminiscent of a two-
point-contact interferometer16 �2PC� for probing quasiparti-
cle statistics. Both methods are sensitive to neutral edge
modes, the main difference being the observation window:
the long-contact setup probes slower edge velocities than the
two-point-contact setup.

We find that coherent tunneling inside a QLC gives rise to
a resonance in the tunneling current at zero temperature for a
bias voltage Vres given by

eVres

�
=

vW

�B
2 , �1�

where W is the width of the QLC, �B is the magnetic length,
and v is the slowest edge velocity associated with the tun-

FIG. 1. Tunneling between two edges in a QLC does not occur
at a single site but rather over a range of positions along the edge.
Arrows indicate propagation direction of current.
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neling quasiparticle. The origin for the resonance has a
simple explanation. The interference of a tunneling quasipar-
ticle between two paths, separated by a distance x along the
edge, is guided by two phases: on the one hand there is the
Aharonov-Bohm phase �e� /e�xW /�B

2 that basically multiplies
the quasiparticle charge e� with the flux enclosed in the area
Wx; on the other hand there is the phase �Jt that is intro-
duced by an applied bias voltage V between the two edges,
with Josephson frequency �J=e�V /� and t=x /v. The reso-
nance occurs at the stated voltage Vres when the two phases
become equal and give rise to constructive interference. The
resonance condition follows from the interference among
multiple tunneling paths along the length L of the QLC;
however, notice that the length of the channel drops out of
the resonance condition Eq. �1�. The resonance becomes
sharper for longer lengths L of the QLC. At finite tempera-
ture T the resonance will be reduced and for temperature
2�T�e�Vres it will be washed out. A sharp resonance in the
tunneling current will lead to a strong peak followed by a
strong dip in the tunneling conductance at nonzero bias.

Now, if there are multiple edge velocities associated with
propagation of the quasiparticle along the edge, there are, in
principle, multiple phases �Jx /vi, one for each velocity. We
are especially interested in a situation where there are two
velocities: one fast velocity associated with the charged
mode and one slow velocity associated with the neutral
mode�s�. For the charged mode the edge velocity is expected
on general grounds to be determined by the scale set by
electron-electron interactions, vc��e2 /�� /�=�c /�, where �
is the dielectric constant of the medium ��GaAs�12.9�.
Therefore, the charge-mode velocity is of order �105 m /s.

With a width W�10�B and �B�10 nm we would find
Vres�0.1 V�103 K; the current that would have to be
driven through the sample at such a voltage would surely
destroy the quantum Hall state. A resonance due to such a
fast velocity is thus not likely experimentally accessible at a
QLC. A neutral mode velocity is not bound to the scale set
by Coulomb interactions though and can, in principle, be
orders of magnitude smaller.

We proceed in Sec. II with a detailed calculation of the
tunneling current to determine the precise line shape of the
resonance; Fig. 2 illustrates the main result of this paper. In
Sec. III we focus on the range of accessible slow edge ve-
locities and compare the observation ranges of the QLC and
the 2PC. We conclude in Sec. IV.

II. TUNNELING CURRENT THROUGH A QUANTUM
LONG CONTACT

In this section we calculate the tunneling current through
a QLC to determine the line shape of the resonance as a
function of bias, temperature, tunneling exponent, and edge
velocity. The tunneling current due to N �discrete� tunneling
sites was calculated in linear response in Ref. 16,

Itun��J� = e� �
i,j=1

N
�i� j

� + �i
�� j

2
�

−	

	

dtei�Jt


Pg/2�t + xij/v�Pg/2�t − xij/v� − ��J ↔ − �J� .

�2�

Here xij =xi−xj and edge quasiparticle propagator Pg/2�t� is
given by

FIG. 2. �Color online� Plots of the tunneling
current per unit length �left column� and differen-
tial tunneling conductance per unit length �right
column� for three states: the Pfaffian ��a� and�b�	,
the anti-Pfaffian ��c� and �d�	 and the �= 2

3 ��e�
and �f�	 state. The three states differ in their val-
ues for e�, gc, and gn. Plotted are Itun /L and
Gtun /L as function of bias voltage at zero and
finite temperatures. At T=0 the current and con-
ductance are zero for bias voltages below the
threshold �J=�res and diverge exactly at the
resonance. At finite temperatures the divergence
is reduced: the current reduces to a peak, the con-
ductance reduces to a peak followed by a dip.
When LT, the length set by temperature, becomes
smaller than �B the resonance becomes fully
washed out and disappears. We set

�
2�res

2�gc+gn�−2ee��1 and W=10�B.
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Pg/2�t� = �
1

�� + it�g for T = 0,� = 0+,

��T�g

�� + i sinh �Tt�g for T � 0. 
 �3�

In this paper we will generalize Eq. �2� by making the dis-
crete number of tunneling sites into a continuous distribu-
tion, �i→��x�, and to separate contributions from charged
and neutral modes, which come with distinct edge velocities
vc/n and tunneling exponents gc/n,

Itun��J� = e�� dxdy��x����y��
−	

	

dtei�Jt Pgc/2�t +
x − y

vc
�


Pgc/2�t −
x − y

vc
�Pgn/2�t +

x − y

vn
�Pgn/2�t −

x − y

vn
�

− ��J ↔ − �J� . �4�

See Fig. 1 for a sketch of the setup. We assume that the entire
bulk has the same filling fraction and the edges are the
modes associated with that bulk state. In the narrow region
under the QLC we do not allow bulk quasiparticles to be-
come trapped.

The form we choose for the tunneling amplitude ��x� ex-
plicitly contains the Aharonov-Bohm phase linear in x,

��x� =
�

���B

e−x2/L2
ei�x/L��e�/e�N
, N
 =

WL

�B
2 . �5�

Here N
 is 2� times the number of flux quanta enclosed in
the area WL; � /�B is a measure of the tunneling amplitude
strength per unit length, which is assumed to be small
enough to warrant the weak-tunneling approximation of lin-
ear response. We included a Gaussian envelope to provide a
smooth cutoff scale at length L; the Gaussian form simplifies
the integration over x and y. The exact form of the cutoff is
not important when L is large, and this is the regime we are
interested in, because temperature will introduce another,
smaller, cutoff length scale. �For the case when L is not so
large �i.e., L /�B�1�, the approximation to ��x� in Eq. �5� is
less accurate in that the Aharonov-Bohm phase should not be
simply linear but should contain a quadratic piece to account
for the funneling in and out of the tunneling region.	

One can carry out the integrals over x and y after recast-
ing the expression for the tunneling current Eq. �4� in terms
of the �inverse� Fourier transforms of Pg�t�,

P̃g���

= �����
�
2g−1 2�

��2g�
for T = 0,

�2�T�2g−1B�g + i
�

2�T
,g − i

�

2�T
�e�/2T for T � 0,


�6�

where ��s� is the Heaviside unit-step function and B�a ,b� is
the Euler beta function. In the limit vc�vn, i.e., neutral mode
much slower than charged mode, the expression for the tun-
neling current becomes

lim
vc→	

Itun = e�
�
2
L2

�B
2� d�1

2�

d�2

2�
P̃gn/2��1�P̃gn/2��2�


P̃gc
��J − �1 − �2�e−1/2N


�2�1 − ��1 − �2�/�res	
2

− ��J ↔ − �J� , �7�

where N

� ��e� /e�N
, e�Vj �� j, and �res�e�Vres is defined

with respect to the neutral velocity as in Eq. �1�.
Let us first consider Eq. �7� in the limit of large L, hence

large N

� , in which case the Gaussian in Eq. �7� reduces to a

delta function that sets �1−�2=�res �and a prefactor
�2� �res /N


� �; in the limit of zero temperature one obtains

Itun → e
�
2
L

W
sgn��J���
�J
 − �res��res

2�gc+gn�−1



2−gn�2��3/2

��gn���gn + 2gc�
� 
�J


�res
− 1�2gc+gn−1


F�1 − gn,gn;2gc + gn;
1

2
−

1

2


�J

�res

� , �8�

where F is the hypergeometric function. Notice the step
function ��
�J
−�res� so that, at T=0, the current vanishes
for biases below a threshold set by the resonance. Near the
resonance, the current scales as Itun��
�J
 /�res−1�2gc+gn−1.
At large biases, far from the resonance, the current scales as

Itun � �
�J
/�res�2gc−1�1 gn �
1
2

ln
�J
/�res gn = 1
2

�
�J
/�res�2gn−1 gn �
1
2


 . �9�

Next, we consider Eq. �7� for finite length L and nonzero
temperature T. We find that either will smoothen the diver-
gence at the resonance that exists for T=0 and L→	. Note
that the ratio Itun /L is a useful quantity to compare different
lengths L. The effect of finite temperature is remarkably
similar to that of finite length in the sense that we can define
a length scale LT set by temperature such that

lim
L→	

1

L
Itun�L,T � 0� �

1

LT
Itun�LT,T = 0� , �10�

LT

�B
�

e�Vres

2�T
, LT =

vn

2�T

e�

e

W

�B
. �11�

It was already emphasized by Bishara and Nayak17 for a
two-point-contact interferometer that vn /T sets a temperature
decoherence length scale; they define a temperature decoher-
ence length as L�=vn / �2�Tgn� �for vc→	�. Their definition
differs from ours by a factor of order 1 �since the two setups
are different, exact comparison is not possible	.

Plots of the tunneling current Itun and the differential tun-
neling conductance Gtun=dItun /dV are shown in Fig. 2 for
the following three quantum Hall states: the �= 5

2 Pfaffian
state �e�=e /4, gc=1 /8, and gn=1 /8�, the �= 5

2 anti-Pfaffian
state �e�=e /4, gc=1 /8, and gn=3 /8�, and the Abelian �= 2

3
state �e�=e /3, gc=1 /6, and gn=1 /2�. The current and con-
ductance are plotted as a function of bias voltage and at
different temperatures as indicated by LT. The tunneling cur-
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rent for a QLC is the main result of this paper, we plot the
differential tunneling conductance as well because it is the
conductance which is usually measured in experiment.

Qualitatively the resonance at a QLC is independent of
tunneling exponents gc and gn, as the plots for the three
different states in Fig. 2 show more or less the same behav-
ior: at zero temperature the current and conductance are
strictly zero below the resonance and diverge exactly at the
resonance bias voltage of the QLC; at finite temperatures the
resonance shows up as a strong peak in the current around
the resonance bias voltage �strong peak followed by dip in
the conductance� which becomes washed out if temperature
becomes too high. Note that Itun�V� decays as power law for
V�T so Gtun will be negative here. Qualitatively the reso-
nance is a probe of a slow edge velocity. Quantitatively, the
tunneling exponents gc and gn do affect the detailed shape of
the resonance peak at finite temperature and a precise obser-
vation of a resonance not only conveys information about the
slow edge velocity but also about the tunneling exponents gc
and gn �Ref. 18�.

III. ACCESSIBLE EDGE VELOCITIES

We would now like to address which range of slow edge
velocities can realistically be observed and directly compare
with the two-point-contact interferometer setup.16,17 The
lower bound is set by temperature �for both setups�. For the
QLC, the scale LT /�B�1 is the crossover region where the
resonance disappears. The lower bound vmin

QLC on the slow
edge velocity is then given by

vmin
QLC �

2�

� e�

e �� W
�B

�
kBT

�
�B. �12�

For typical values, Tbase=10 mK, �B=10 nm, W /�B=10,
and e�=e /3, we find vmin

QLC�25 m /s. For the 2PC setup, the
interference signal �which carries the edge-velocity signa-
ture� is washed out when the spacing x between the two
contacts, i.e., the interferometer armlength, is smaller than
L�. In current experiments, device fabrication limits
x�1 �m. With gn=1 /4, this gives a lower bound of
vmin

2PC�2000 m /s. Note that the QLC is sensitive to edge
velocities up to two orders of magnitude slower compared to
the 2PC setup. An intuitive explanation for this difference is
to think of the QLC as an array of point contacts with a very
small effective spacing x which is much smaller than any
spacing x that can be fabricated for a 2PC setup.

For both the QLC and 2PC setups, the upper bound on the
edge velocity that can be observed is given by the maximum
voltage that can be applied to the quantum Hall system with-
out destroying it due to, e.g., heating �a current I=V /RH has

to flow through the system�. This maximum voltage Vmax is
not as clear cut and may depend on sample, specific experi-
mental setup, and filling fraction. In terms of this Vmax we
have for the QLC setup

vmax
QLC =

1

� W
�B

�
eVmax

�
�B. �13�

To give a numerical estimate, for eVmax=750kBTbase one
would find vmax

QLC=1000 m /s. The bulk excitation gap Tgap
likely sets the scale for Vmax but prefactors are important
�e.g., eVmax�Tgap and e�Vmax�2�Tgap differ by a factor 20	.
For the 2PC setup our estimate gives vmax

2PC�105 m /s �for
x=1 �m�.

IV. CONCLUSION

Given our estimates of the �nonoverlapping� ranges of
accessible edge velocities, we have to conclude that the QLC
and 2PC setups complement each other quite well. A dedi-
cated search for slow edge velocities should implement both
setups in order to probe edge velocities from tens to ten
thousands of meters per second. Besides the different ranges
of edge velocities, the main difference between the two set-
ups is the signature of the edge velocity: for the QLC it is a
resonance in the tunneling conductance as function of bias,
for the 2PC it is a modulation of the interference signal
within the tunneling conductance as function of bias;16,17 de-
tecting a modulation in interference requires an extra experi-
mental knob compared to detecting a resonance.

In this paper we assume the width W of the QLC is con-
stant but disorder may lead to fluctuations of the width. As
long as such fluctuations along the edge occur on scales
larger than the magnetic length the resonance should survive,
albeit with some broadening of the line shape. A feature at
finite bias observed in device 2 of Ref. 19, a channellike
geometry, can be due to a resonance, and leads us to expect
that the proposed QLC setup is physically realizable.

In summary, we proposed and analyzed a device that can
potentially detect the presence of neutral edge modes at the
edge of QH liquids, by resolving velocities as small as tens
of m/s. The ability to resolve these modes and measure their
velocity of propagation using a QLC �possibly combined
with a 2PC� can provide a better quantitative understanding
of QH edge states and can help guide attempts to probe qua-
siparticle statistics, both Abelian and non-Abelian.
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